

A Column Store Engine for Real-Time Streaming

Analytics

Alex Skidanov, Anders J. Papito, Adam Prout

MemSQL

San Francisco, CA

{alex,anders,adam}@memsql.com

Abstract— This paper describes novel aspects of the column

store implemented in the MemSQL database engine and

describes the design choices made to support real-time

streaming workloads. Column stores have traditionally been

restricted to data warehouse scenarios where low latency

queries are a secondary goal, and where restricting data

ingestion to be offline, batched, append-only, or some

combination thereof is acceptable. In contrast, the MemSQL

column store implementation treats low latency queries and

ongoing writes as first class citizens, with a focus on avoiding

interference between read, ingest, update, and storage

optimization workloads through the use of fragmented

snapshot transactions and optimistic storage reordering. This

implementation broadens the range of serviceable column store

workloads to include those with more stringent demands on

query and data latency, such as those backing operational

systems used by adtech, financial services, fraud detection and

other real-time or data streaming applications.

Keywords—columnstore, columnar, realtime, memsql, tpch,

analytics, concurrency, streaming

I. INTRODUCTION

Many modern analytical databases are based on column
store engines. Column stores have many advantages for
analytical queries, such as highly optimized compression and
fast table scans. Relative to row stores, they tend to suffer on
workloads that require selective filters, as column stores
cannot leverage index seeks. Column stores are primarily
optimized for queries that scan most or all of a table.
Compression and column pruning vastly reduce disk IO, and
processing can be optimized with vectorized execution, code
generation, and by running operations directly on compressed
data [5] [11].

With the addition of a sort order, often called a sorted
projection, several new patterns of optimized queries are
enabled. Operations on small key ranges, such as SQL
BETWEEN queries, can be executed with low variance
latencies. In many cases, after examination of memory-
pinned file metadata, only a single disk IO will be required to
service a query. Heavier queries can also be significantly
improved - for example, two large tables could be joined with
a merge join algorithm, or a distributed grouping operation
could be performed in a streaming manner and with constant
space overhead.

However, these improvements in latency tend to be most
required by systems that have a transactional write aspect to
them - for example, providing an analytical dashboard over a
live stream of data. To support such workloads, static sorted
projections are of no use. Allowing online write operations is
a requirement. Despite this, popular column store databases
either do not support sorted projections or fail to efficiently
maintain them in the presence of continuous data ingestion,
which restricts their use to data warehouse scenarios.

In this paper we describe an implementation of column
store projections which treats low latency queries as a first
class citizen alongside batch processed analytics. It enables
transactional and analytical queries to leverage fast selective
filters alongside concurrent, continuous data ingestion and
modification, with asynchronous storage reordering allowing
data to be accessible to reads immediately after ingestion.

The approach differs from those of other state-of-the-art
column store engines in several key aspects. It maintains
groups of rows in an order that allows for fast seeks and can
be efficiently maintained during concurrent data ingestion. It
leverages snapshot isolation level to reorder rows in a
background thread with constant disk and memory overhead,
and without interfering with concurrent read queries. It uses
an optimistic reordering technique that does not interfere with
concurrent updates and deletes. And finally, it enables a wide
range of workloads which depend on data being visible to
read queries immediately after ingest, and which have
traditionally been unattainable for column store engines. We
describe these techniques in detail, and provide an
experimental performance comparison with two state-of-the-
art column store databases.

A. MemSQL Architecture

MemSQL is a distributed SQL engine with a two tiered
architecture consisting of scheduler nodes and execution
nodes. It contains two primary backing data formats: an in-
memory skip list-backed rows store and a disk/SSD-backed
column store, each of which can be selected on a per-table
basis and the latter of which is the main focus of this paper.
MemSQL makes use of an advanced distributed query
planner and optimizer. However the details of distributed
query execution are orthogonal to the concerns of low-
latency processing that we discuss in this paper, and in fact
for the most part the distributed component of our query
optimizer does not distinguish between row store and column

store tables. MemSQL also makes use of other advanced
implementation techniques including runtime code
generation, automatic parameter detection and distributed
transactions. These features are largely unrelated to our
treatment of a low latency column store engine, and we do
not discuss them further.

B. Paper Structure

In section 2, we review the relevant storage concepts for
column store systems. In section 3, we introduce our
treatment of segment elimination. In section 4, we introduce
our treatment of sorted runs, which we expand with
projection maintenance concerns in section 5. In section 6 we
discuss real-world practical considerations of our system.
Section 7 contains experimental results, which section 8
fleshes out with a discussion of related systems.

II. BACKGROUND CONCEPTS

For an overview of the architecture and implementation
of modern column stores, see [3]. Here we review the
concepts most relevant to building a column store system that
handles operational queries in the presence of a continual,
online write workload. We focus mainly on the organization
of rows into larger units, namely segments, sorted runs, and
projections.

A. Segments

In a column store, each column of the source table is
stored separately, to allow independent compression and
query access. To allow flexibility in implementation, as well
as amortization of costs such as disk seeks, tables are also
partitioned horizontally into subsets of rows which we call
segments. Each row belongs to exactly one segment. Each
segment will typically contain between tens of thousands and
millions of rows, depending on the details of the workload.

For each segment, several items are maintained. There is
a file on disk per column of the table, storing the appropriate
values. There is also a metadata representation of the
segment, held in a durable in-memory data structure (in fact,
a MemSQL row-store table). The metadata representation
stores the file locations and a bit vector marking logically
deleted rows. It also stores optimization-related information,
including encoding schemes and the maximum and minimum
projection key values represented in the segment.

With this representation, inserts and deletes are
straightforward. Inserts always create a new segment (or
multiple new segments, for large inserts), while deletes
update the metadata representation to mark rows as logically
deleted. Updates are implemented as deletes followed by
inserts (within a single transaction).

B. Projections

Projections have a purpose analogous to that of a row
store table's indexes. They allow seeking to a particular key
value or key range in order to optimize query performance,
though only to the granularity of a single segment. They can
also be leveraged to provide ordered iteration of rows,

although unless care is taken, this property degrades easily in
the presence of an ongoing write workload.

As with row store indexes, it can be valuable to have
multiple projections on the same table, allowing efficient
access along several keys. In this paper we consider only
maintaining a single projection. Maintaining multiple
projections is an orthogonal problem, and is described in
detail in [1].

Query optimization and execution techniques can
leverage the projection sort order both internally within a
single segment, and externally across multiple segments. On
the left of Figure 1 is an example of two segments sorted
internally but not externally - the ranges [1, 108] and [3, 72]
overlap. On the right of Figure 1 is an example of two
segments sorted both internally and externally.

Fig. 1. Two approaches to sorting data in segments.

Internal sorting is supported by majority of column store
databases. It is easy to maintain as the data is inserted or
modified, but it also provides only a limited value to the
optimizer and the query execution engine. In many cases the
cost of going to disk and decompressing overshadows any
savings from intra-segment seeking. External sorting, and, in
particular, maintaining all the rows in a perfectly sorted order,
is a harder problem that is the main focus of the remainder of
this paper.

III. SEGMENT ELIMINATION

In some cases, in particular when we have external
sorting, queries with selective filters can employ a technique
that we call segment elimination. Segment elimination is a
procedure that avoids opening a segment if that segment is
guaranteed not to contain rows that match the filter. For
example, if the segment has only values in the interval [1,
100], and the query predicate only keeps values greater than
150, we do not need to open or decompress this segment at
all. To enable segment elimination, we store the minimum
and maximum key value in the per-segment metadata. Note
that it is not necessary to maintain these values in the
presence of deletes (and thus updates) - segment elimination
is a safe heuristic.

A complementary approach, which we term full
enclosure, is also available. If a query predicate can be seen

Internal Sorting

1, 7, 13, 108

3, 18, 72

Internal and
External Sorting

1, 3, 7, 13

18, 72, 108

to be true for all values in a segment, certain aggregates can
be computed directly from metadata. For example, the
following query

SELECT COUNT(col)

FROM table

WHERE col > 100 AND col < 300;

when run over four segments with intervals [0, 150],
[150, 250], [250, 400] and [400, 500], can leverage both
segment elimination and full enclosure. Only the first and the
third segments need to be opened. The second segment is
fully enclosed by the filter, so its minimum value can be taken
from the metadata, and the forth segment can eliminated,
since its interval is outside of the range of the filter.

Note that segment elimination can be similarly performed
on raw column values, without explicitly maintaining a sort
order. However projections maximize the usefulness of the
technique.

IV. SORTED RUNS

Sorted runs are the foundation upon which we implement
projections. A sorted run is an ordered set of segments such
that the minimum value of every segment in the set is larger
or equal to the maximum element of the preceding segment
in the set (we say also that segments in the run are externally
sorted). For instance, if the key of the projection is a single
integer column, then the segments that are presented on
Figure 2 on the left can be combined into sorted runs in
several ways, as shown on Figure 2 on the right. The smallest
number R of sorted runs into which a given set of segments
can be partitioned is an important value, because in case of a
seek for a specific value v at most 2𝑅 + 𝑘 segments must be
opened, where k is number of segments whose interval is [v,
v].

To see this, we first consider all k segments with interval
[v, v]. Clearly these must be opened, so we add k to our count
and remove them from consideration. For each run, the value
v must then be either in the interval of no segments, in the
interval of a single segment, or on the boundary of at most
two adjacent segments.

It is desirable to limit the number of sorted runs that the
segments form. The smaller the number of sorted runs, the
fewer segments that need to be opened to process a query that
seeks for a single value, or a query with a selective filter in
general.

Fig. 2. Sorted runs.

Certain kinds of data are naturally distributed in such a
way that the number of sorted runs will be very low. Most
commonly, if the projection is sorted on a time-based column,
and rows are created and inserted in roughly chronological
order, segments will partition into very few runs even without
reordering.

However, for most of the columns the distribution does
not naturally align with the order in which the data is inserted,
and there will be almost as many sorted runs as there are
individual segments, making it impossible to effectively
perform segment elimination.

In order, then, to partition a set of segments into the
fewest sorted runs, we use the following algorithm, costing
𝑛 log 𝑛 time:

1. Initialize the set of sorted runs S to an empty set

2. For every segment in the order of increasing minimum
value:

2.1. If there's a sorted run in S, that has the maximum
value in it smaller than the minimum value of the current
segment, add the current segment to that sorted run.

2.2. Otherwise, add a new sorted run to S, consisting only
of the current segment.

3. Set S contains the smallest number of sorted runs that
the input set of segments can be split into.

A. Exponentially Decaying Sorted Runs

Ideally we would want all rows in the table to form a
single sorted run. With such an ordering, the overhead of any
equality seek or range scan is at most two segments' worth, if
we consider overhead to be work spent scanning rows that do
not satisfy the predicate. However, in a presence of
continuous data ingestion this is not a feasible approach
because every insert or load could require resorting the entire
table. Note that except in the case of naturally clustered data
(as with a time-based projection key) this is not only a worst
case, but rather a common case, because we expect fresh data
to be fairly well distributed throughout our key range. Since
one of our goals is for reads to see new data immediately after
getting loaded, we discard this approach. Note that the

Segments

1, 92, 107

2, 17, 42

63, 84

110, 118, 172

Possible sorted runs

1, 92, 107

2, 17, 42

2, 17, 42

63, 84

1, 92, 107

110, 118, 172

63, 84

110, 118, 172

problem still exists even if the new batch is internally
ordered.

An alternative approach, used in the core of the MemSQL
column store engine, is to maintain one large sorted run that
has at least half the rows in the table, another sorted run that
has at least half of the remaining rows, and so forth. With this
structuring, the number of sorted runs does not exceed log 𝑠,
where s is the total number of segments. We also have the
property that ingesting a new batch of rows will only require
amortized 𝑘 log 𝑠 time to update the order, where the new
batch comprises k total segments. This idea is similar to that
of LSM trees [10].

In practice, we have found it optimal to use a larger decay
ratio. The MemSQL column store engine uses a constant of

8, so that the biggest sorted run has at least
7

8
 of all the

segments, the second biggest sorted run has at least
7

8
 of the

remaining segments, and so forth. There is a tradeoff between
the constant factor in the data ingestion performance and
constant factor in performance of reads that can leverage
segment elimination. Higher multiplier makes data ingestion
slower, but at the same time improves the performance of the
reads.

V. MAINTENANCE OF SORTED RUNS

The addition of new segments due to inserts and updates
disturbs the invariant of exponentially decaying sorted runs.
To restore the invariant, it becomes necessary to reorder and
repartition rows across segments. Because segments are
sorted internally as well as externally, merge sort is a natural
way to redistribute rows across segments. The algorithm to
redistribute rows across multiple segments is the following:

1. Split the segments into the smallest number of sorted
runs

2. While number of sorted runs is greater than 1:

2.1. Group sorted runs into pairs of similar size

2.2. For each pair, merge two sorted runs in that pair into
one

The body of the loop at step 2 is a very expensive
operation that rewrites all the segments in the segment group.
It is being executed log2 𝑛 times, where n is the number of
input sorted runs. Because of this, in practice it makes sense
to merge more than two segments at a time so that the base of
the logarithm is higher and the number of iterations is
smaller.

We also revisit the merge step of the merge sort
algorithm, modified to work properly with sorted runs. We
consider the merge of two sorted runs, but it can be easily
extended to arbitrarily many sorted runs:

1. For each sorted run, initialize an iterator at the first row
of the first segment in that sorted run.

2. Initialize a new empty segment.

3. While neither of the iterators is saturated:

3.1. Read current row from both iterators.

3.2. Write the smaller of the two rows into the new
segment.

3.3. If the new segment is bigger than the segment size
threshold, write it to disk, and initialize a new segment.

3.4. Advance the iterator that had the smaller row.

4. For each row in the sorted run that was not saturated,
move it to the new segment, writing it to disk and resetting
when necessary.

5. Delete all the input segment files.

In order to maintain the exponentially decaying sorted
runs, we perform several steps on insert. Each time a new
batch of data is inserted it is fully sorted internally before the
transaction completes. Due to this, the newly introduced rows
form at most one additional sorted run, even if they
correspond to multiple segments. Then if that run is larger

than
1

8
 of the smallest sorted run they are merged together. If

the resulting sorted run is larger than
1

8
 of the next smallest

sorted run, then they are merged together as well.

With care in the implementation, it is possible to closely
estimate how many segments will result from merging sorted
runs. Our implementation inspects the segment metadata for
present and deleted row counts to determine the length of the
resulting run. This information is used to collapse multiple
iterations of merging into a single round in cases where a
small trailing run would be produced and then immediately
enter the merging process again - instead we merge with the
additional run immediately.

A. Reads During Sorting

In order to allow reads while merging is underway, it is
important that the reads have a consistent view of the data. In
particular, new segments produced by the merge cannot be
immediately made visible to concurrent reads. If a concurrent
read sees the new segment, it may either encounter duplicate
rows (from another segment that was partially consumed by
the merge to produce the new segment), or may miss rows if
the partially consumed segment is relocated in the metadata
index and thus missed entirely. These issues are similar to
those that could be observed due to a concurrent update in a
READ COMMITTED isolation level transaction - and
indeed, one way to look at merges is as an UPDATE that
happens to not change any column values. However because
these update-like operations are generated internally by the
engine's background process, instead of by explicit queries in
the user workload, it is important that they cause no
anomalies.

To address this issue, queries against the column store
engine are served with SNAPSHOT isolation level. With
SNAPSHOT isolation, the background sorting process is
entirely transparent to read queries.

However, wrapping merges in a big transaction has an
additional downside. While the merge is underway, disk

usage of the affected rows is doubled. If we are merging the
largest segments in the table, this can mean almost doubling
the disk usage of the whole server.

The approach that we use in MemSQL column store
engine is to commit immediately as a new segment is written,
and mark all the rows in the input segments that were already
moved to the new segments as deleted as part of the same
transaction. If some segment was completely saturated as part
of a merge step, it is deleted from the metadata entirely, and
all its files are erased from disk, as part of the transaction that
writes the new segment onto disk. Because reads are served
with SNAPSHOT isolation, each query will see the correct
set of rows.

This approach has an important properly that it will only
use a constant extra disk space. If the merge sort algorithm
merges k segments at a time, then at most k extra segments
can exist on disk simultaneously, assuming that all the
segments have the same number of rows. The particular
scenario in which case this worse case occurs is when all the
iterators of the merge sort are pointing to the last rows of their
corresponding segments.

B. Writes During Sorting

The merge sort algorithm introduced above needs to
properly handle concurrent write queries. There are two
challenges to consider:

1. After the smallest set of sorted runs is found, but before
the sorting finishes, segments may be removed or introduced
by concurrent writes. This can result in the smallest set of
sorted runs being changed.

2. As we process segments and write new segments,
concurrent writes may want to change those same segments.
The merger must either lock the segments it processes or
employ some optimistic concurrency control technique.

1) Handling changes in sorted runs
To address the set of sorted runs being changed as we sort

it, first we claim that the process of building the sorted runs
requires amount of time negligibly small compared to the
actual merging algorithm. This is because it is a metadata-
only operation with a very low time complexity, while
merging involves intensive disk IO. Thus, we can recompute
the sorted runs periodically - every so many merges, or after
writing every so many new segment. In the common case
(over half of the time) when the merge involves only a few
segments in several small runs, concurrent modifications can
be handled by aborting and rolling back the entire merge
operation and trying again - in this case the lost work is not
significant. When merging a larger number of segments
where losing work becomes expensive, we simply skip over
any missing segments, and ignore any new segments. Note
that removing any number of segments from a sorted run does
not destroy the ordered property of the remaining segments.
Therefore, regardless of how many segments are removed
concurrently, the merge will produce precisely one sorted run
as output, and take time proportional to the length of this

output run. Therefore the background merging process will
always make reasonable progress.

The type of writes that interferes with merges the least is
deletes. If a segment has been partially or entirely deleted, the
merge will simply skip that segment. It results in a smaller
sorted run being produced than anticipated. However, the
criteria to choose which sorted runs to merge was such that
the resulting sorted runs is no larger than some fraction of the
next biggest sorted run. Clearly, skipping input segments
cannot violate this constraint.

Inserts can interact with sorted runs in very unintuitive
ways. In particular, introducing new segments can change the
way existing segments are distributed among sorted runs. To
see why, consider an example of two segments [1-50] and
[150-200]. Clearly, they form a single sorted run. However,
if two more segments were introduced, with ranges [1-110]
and [90-200], then the smallest set of sorted runs is ([1-50]
[90-200]) and ([1-110] [150-200]), in other words the
segments that were previously in the same sorted run are now
belong to two different sorted runs. Thus, an insert can result
in a segment moving from a small sorted run which was due
for merging to a much larger run which is not due for
merging, after recomputation of the ideal partitioning of
segments into sorted runs. The most straightforward way to
address this is to not replan which merges to perform until all
currently planned merges have been completed. Therefore,
even though the execution of the merges will itself use many
small snapshot transactions, the planning and scheduling of
these merges is based on a single up-front snapshot of
metadata which is explicitly not updated as execution
proceeds. We discuss this further in the section on practical
considerations below.

Updates in general can be considered as deletes followed
by inserts within a transaction. As long as both deletes and
inserts are handled properly, updates will be as well.
However, for some classes of updates, operation behavior
and performance of the system can be improved significantly
by playing nicely with the background merging process. In
particular, if an update modifies all rows in a segment but
does not change the segments key interval (for example, by
modifying only columns which are not part of the projection
key), then the merging process can substitute in the updated
segment rather than skipping it. This causes the background
process to converge to a stable state sooner, since the state of
the engine more closely resembles the state for which the
preplanned schedule was derived.

2) Handling concurrent access to a single segment
To handle writes attempting to change a segment which

is concurrently being read by the background merging
process, a way of resolving concurrent accesses is needed.

One way would be for merging to lock all the segments it
is currently reading from. The maximum number of segments
being merged at a time is bounded by the exponential decay
and merge fan-in ratio (8 in the case of the MemSQL engine).
However such an approach would increase the latency of
concurrent writes waiting to acquire the same locks. In

particular, the worst case scenario involves merging a single
segment whose key interval is large with a long run. For
example, Figure 3 shows an example where a sorted run
consisting of a segment with minimum value of 1 and
maximum value of one thousand is being merged with a
sorted run of segments, each containing a small range of
values.

Fig. 3. Worst case for pessimistic locking.

In this worst case scenario the segment that spans a large
range of values will stay locked for the entire merge operation
(taking time proportional to the sum length of all sorted runs
involved in the merge) because it has rows that need to be
merged with segments at the both ends of the other sorted
runs.

Unfortunately, such a scenario is very likely to happen in
practice because the existing segments that currently form
long sorted runs usually span a very small range of values
while new segments that are inserted tend to span almost the
entire range of possible values.

In order to avoid this pitfall, we use optimistic
concurrency control. Merging does not take lock on segments
as it processes them. Locks are taken only when a transaction
is ready to be committed. Every time the merger is ready to
write a new segment to disk it verifies that all the input
segments that contributed to that segment still exist and that
all the rows that were merged in have not been deleted by
concurrent writes. If this is not the case, it rolls back all
iterators to the positions they were before the last output
segment was populated, and discard the new segment. If any
input segment that the iterators are currently pointing at was
completely deleted, the corresponding iterator simply
advances to the next segment in its sorted run. If a subset of
the rows in a segment were deleted then the new output
segment can be regenerated, skipping the deleted rows on the
second pass.

We consider the impact on the performance of the merger
of using the optimistic approach. We assume that writes
proceed at approximately the same speed as the merge.
Clearly, new data being ingested does not interfere with the
merger because the merger operates on a snapshot of the
metadata. Updates which affect many consecutive rows have
a low probability of interfering with the merger because the

time it takes to update one segment's worth of rows is
comparable to time it takes for merger to produce a new
segment. Thus the probability of such an update to change the

segment that is being merged has an upper bound of
1

𝑛
, where

n is the total number of segments. A more precise estimation
for the case when the merger is slower than the writes is
derived below.

However, deletes and updates of individual or well-
distributed rows need to be handled separately. In the
presence of queries that update few rows across many
segments, the chance of modifying one of the segments that
is being merged is very high and this can result in starvation
of the merger if it retries each time. To address the problem
we optimize this case to track exactly which rows were
merged into the new output segment. As we commit we
check if any of them were deleted. If any were concurrently
deleted then in place of discarding the segment and starting
over, we mark those rows as deleted in the output segment
before writing it to disk. Newly created segments can
therefore already contain tombstoned rows. We only trigger
this optimization if the fraction of concurrently deleted rows
falls below a certain threshold because introducing segments
with a significant fraction of deleted rows negatively impacts
both disk usage and query performance. The value of the
threshold is a tradeoff. Higher values will result in higher disk
usage and some penalty on select but will provide faster
merges since fewer restarts will be necessary. Lower values
will result in lower disk usage but will slow down merges.

To get a better sense of how the merger is affected by the
write queries in practice where the performance of the merger
is not necessarily equal to the performance of the writes, we
derive the effect of write queries on a concurrent merge more
precisely for several cases. We will consider separately two
scenarios: when the updates are modifying rows that are
located consecutively within the segment, and when the
updates modify the rows randomly with respect to the
projection key.

Let us examine how likely it is for such an update to
modify a segment that is being processed by the merger.

We assume that the ratio between the throughput of the
updates and the throughput of the merger in terms of the
number of rows written per unit time is r, which for simplicity
we will assume to be an integer, and the total number of
segments is n, with all segments containing a similar number
of rows. We will assume that there are on average s rows per
segment. We will also assume that the merger processes m
segments at a time, and that it will only start the work over if
one of the input segments was completely removed or if the
fraction of the rows that were merged into the new segment
that were deleted concurrently was higher than d. Recall that
the merger commits a transaction every time it has a full
segment's worth of data ready to be written to disk. Thus it
will conflict with an update only if the update managed to
change one of the input segments in the time duration it took
the merger to produce one output segment. That time is
sufficient for the update to produce r segments, which, due to

Sorted run
1

Min: 1
Max:1000

Sorted run
2

Min: 1
Max: 15

Min: 15
Max: 73

...

Min: 997
Max: 999

the fact that the rows were read consecutively, implies that at
most r + 1 segments were affected. Either r - 1 segments were
completely deleted and two segments partially deleted, or r
segments were completely deleted. The probability that one
of these r - 1 (or r) segments was being merged is

1 −

𝑠 − 1
𝑠

(𝑛−𝑟+1
𝑚

) +
1
𝑠

(𝑛−𝑟
𝑚

)

(𝑛
𝑚

)

The two remaining segments, which were only partially
affected, would only make the merger restart if it read from
one or both of them, and between them processed more than
ds rows that were deleted concurrently. We do not provide a

tight bound for this probability, but it does not exceed
1

𝑛
 for

the cases when 𝑑 >
1

𝑚
.

For the case of updates that modify a random set of rows
the derivation is simpler. It is the probability that out of rs
rows that were changed more than ds were among the s rows
we read. The probability of that is

1 − ∑
(𝑛𝑠−𝑠

𝑟𝑠−𝑑𝑠+𝑖
)(𝑠

𝑑𝑠−𝑖
)

(𝑛𝑠
𝑟𝑠

)

𝑑𝑠

𝑖=1

Knowing the expected values of n and s, we can derive
the values of m and d that give the best value of r and an
acceptable likelihood of restarting the merge. For instance,
we consider a system that stores 10,000 rows per segment,
has around 1000 segments worth of data, expects writes to be
5 times as fast as the merger, merges 8 segments at a time,
and does not roll back the merged segment if number of
deleted rows does not exceed 12.5% of the total number of
rows merged. In such a system the probability of a random
update to interfere with the merge is negligibly small, and the
probability of an update that updates consecutive rows to
interfere with the merger is 4%. Increasing expected number
of segments to 10000 or decreasing the ratio between writes
and merger performance to 2, brings that probability down to
1%. Changing number of rows per segment does not have a
significant effect.

C. Concurrent Merges

In certain scenarios, some of which we consider below, it
is desirable for multiple merges to occur simultaneously on
the same set of segments. For example, while two very large
sorted runs are being merged, it might be desirable to merge
several smaller sorted runs to get immediate performance
benefits. If two merges operate on two disjoint sets of sorted
runs, then they will not interfere with each other in any way,
which allows the introduction of concurrent merges.

One way to ensure that concurrent merges never attempt
to merge the same sorted run, or sorted runs that share a
segment (the same segment at different moments of time can
belong to different sorted runs) is for the merger that started
earlier to mark all the segments it is planning to merge, and
for any concurrent merge to disregard such marked segments
during its planning stage.

VI. PRACTICAL CONSIDERATIONS

In practice it is not always feasible for merges to be as fast
as the concurrent inserts. If they were as fast, it would mean
that in their absence twice as must data could have been
ingested, assuming that the disk is the bottleneck, and
reducing the peak ingestion speed by a factor of two to
maintain the projections is not always an acceptable tradeoff.

In this section we present several techniques that make
projections usable in practice, when concurrent data ingestion
and other write queries outperform merging. In particular, we
aim for projection maintenance to be as asynchronous as
possible so that for time-varying workloads we have minimal
resource requirements at times of peak workload intensity.

A. Fast and Slow Mergers

A critical observations is that merging two large sorted
runs and merging two small sorted runs result in the same
expected improvement in performance of the read queries
that can leverage sorted order. Merging either of the pairs
would result in reducing the number of sorted runs by one,
and the worst case complexity of the read queries with high
selectivity is proportional to the number of sorted runs. With
only a single background merging process, if it becomes
occupied merging two very large sorted runs, and several
smaller sorted runs were inserted concurrently, all read
queries will suffer from poor performance, while a very
cheap merge operation could have improved it. To address
this, we have two background mergers - the Fast Merger and
the Slow Merger, which are distinguished by which size runs
they process. The Fast Merger processes only runs below a
certain small cutoff (in MemSQL, this bound is set to the
length of ten segments), while the Slow Merger exclusively
processes runs at or above that threshold. Since the fast
merger only merges small sorted runs it never gets stuck on
an expensive operation. This way when a new batch of data
is inserted, if a very small sorted run is created that can be
quickly merged into another existing sorted run, the fast
merger will be available to do that with very low latency. The
slow merger, on the other hand, can work on merging large
sorted runs for a long time without any regression in
performance of concurrent queries. Note that while the
engine endeavors to keep segments at a certain size (e.g.
100,000 rows each) the user workload may produce vastly
smaller segments (a handful of rows) as a result of inserts. It
is especially vital that these anomalously small segments are
cleaned up as quickly as possible.

B. Manual Merging

Techniques such as optimistic merging and splitting
dividing between fast and slow merges allow for maintenance
of the projections in the presence of concurrent writes.
However, in certain cases it is desirable to improve the read
performance even more by reducing number of sorted runs at
an accelerated rate, even at the price of temporarily reduced
write performance. One common such case occurs after an
initial bulk load when a project or workload is first kicked
off. To address such use cases, we introduce two manual
commands that a user can run. The first command allows the

user to run the algorithm that restores the invariant of
exponentially decaying sorted runs using a pessimistic
merger. The pessimistic merger is significantly faster than the
optimistic merger if there are concurrent writes because it
will never roll back and lose work, but in the worst case some
writes might get stuck for a considerable amount of time
waiting for a lock on a segment. This way the user can restore
the invariant faster and increase read performance by
temporarily sacrificing latency of write queries. It is
important to note than overall time complexity is not
sacrificed - if the user invokes the pessimistic merger each
time a new batch of data is loaded, the pessimistic merger will
still be doing amortized 𝑘 log 𝑛 operations, where k is the
number of segments that were inserted. The only difference
is that now it will be taking locks on the segments it
processes. Thus, if one wants to increase read performance
by sacrificing update performance, it is a viable approach to
run the pessimistic merger after each batch is loaded.

Another command allows the user to entirely sort all the
segments into one large sorted run. This operation will reduce
the time taken by all the reads that follow by a factor of log 𝑛,
which for the case of several thousand segments means at
least an improvement by a factor of 10. However, it will take
time proportional to 𝑛 log 𝑛, so it is not viable to use after
ingesting each new batch of data. It is very valuable in
practice when workloads have a range of read and data
freshness requirements. Often this command is used only for
some tables, or in preparation for running intensive batch
workloads which benefit from reducing the overhead of
sorted iteration.

C. Sorting New Batches

When a new batch of data is inserted, unless the new rows
are tightly clustered with respect to the sort key, then it is
unlikely that any of the segments this batch introduces will
naturally fit into any of the existing sorted runs. It is also
unlikely that any two of the new segments will form a sorted
run on their own. A new batch consisting of n segments is
likely to introduce n new sorted runs, which will immediately
be picked up by the fast merger. Until the fast merger
processes them, the performance of read queries with high
selectivity will be degraded significantly. For example, if the
new batch introduced 10 new segments, and the number of
sorted runs is 8 (log8 𝑛 for n of around 100 millions), then the
performance of the selects will degrade by a factor of two
until the fast merger finishes with them.

Because of these two considerations, we sort the entire
new batch of data before the transaction commits and the data
is made visible.

D. Streaming

In our analysis above we assumed that write queries
always insert enough rows to produce full segments (one
hundred thousand rows per segment is the default in
MemSQL). Since column stores were originally designed
with bulk loading of data in mind, such an assumption was
reasonable. However, our experience indicates that there are
many practical use cases for column store where it is

desirable to insert small chunks of data at a time, with batch
sizes as low as a single row. In the context of a distributed
database system, this challenge can be significantly
amplified. If rows are hashed and distributed among many
partitions on different machines, then each individual
partition may receive input batch sizes two or three orders of
magnitude smaller than the application initially provided,
which are negligibly small compared to the full segment size.

The naïve approach is to create a new segment for each
new batch of rows, even if there are not enough to provide a
full segment. Such an approach invalidates assumptions we
rely on above. In particular, our analysis of how quickly a
merger can merge segments in the presence of concurrent
writes assumes that the segments produced by writes and
those produced by the merger have approximately the same
size. However, if the write queries produce significantly
smaller segments, the merger will fall behind, which will
result in a lot of very small sorted runs. A high number of
small sorted runs can in turn cripple read performance.

Another approach is to employ a buffer that accumulates
rows as they are ingested, and only writes a full segment
when enough rows are accumulated. For example, C-store, a
predecessor of Vertica, describes a write-optimized storage
designed for the same purpose [1]. The key challenge is that
read queries must incorporate these buffered rows, so that
they are visible immediately when the write query commits.

In our implementation we use our row store data
structure, namely a lock-free skip list, in front of the column
store. Each time a write query attempts to insert less than a
full segment of rows, those rows are inserted into that skip
list instead. As soon as the skip list has enough rows for a full
segment, that segment is written to disk and the rows are
deleted from the skip list in a single transaction. From the
perspective of the read queries such a skip list is just an extra
segment, indistinguishable from a segment that is actually
stored on disk. The skip list naturally stores data sorted, so
this extra segment is also always sorted.

It is important to note that some algorithms can leverage
the internal representation of data in the column store. For
example, since the data for each column is stored
consecutively, it is possible to process multiple values in a
single SIMD instruction. Moreover, some operations can be
done on compressed data, without even restoring the original
values. A write optimized data structure, such as skip list, will
not allow for either of these two optimizations. In practice
losing these optimizations is not important, because the
amount of data in the skip list is insignificant relative to the
amount of data on disk, and the performance degradation due
to using less optimized algorithms to process data in the skip
list is negligible compared to total time spent processing all
the remaining data.

VII. EXPERIMENTAL RESULTS

In this section we present two use cases, compared against
two state-of-the-art column store databases that are widely
used in production. We will refer to the competing databases
as A and B throughout this section. The first use case is TPC-

H benchmark. TPC-H provides a specification [8] for refresh
functions that need to be executed as the workload is running.
However the frequency of those functions can be chosen
arbitrarily by the test sponsor. We are running the TPC-H
benchmark against MemSQL and the two other databases
with a very high refresh rate. The second benchmark is the
adtech scenario that will be described in detail below.

A. TPC-H Benchmark

The TPC-H benchmark defines refresh functions that
insert new orders and lineitems, as well as delete old orders.
The functions in the definition insert and delete single
elements. We run benchmark both executing such queries,
and also executing batched loads and deletes, to see how
MemSQL and the two other databases handle these two
different cases.

Our first results are for vanilla TPC-H with a scale factor
of 100, with refresh functions as declared in the specification
running as frequently as each database allows. We verified
that MemSQL has at least as high a throughput as both A and
B.

We run all three databases on comparable clusters.
MemSQL and A use 4 execution nodes, each with 8 cores,
while B uses an 8 node compute cluster with each node
having 4 cores.

To get a baseline, we first run all the TPC-H queries
immediately after the initial load but before starting the
concurrent write workload. For that we get the performance
numbers that are shown on figure 4. There are 22 TPC-H
queries on the X-axis of the chart, with time taken to execute
the query on Y-axis, in seconds.

Fig. 4. TPC-H comparison without concurrent write queries.

As expected, different databases perform well on
different queries, due to differences in query optimization and
execution. The fact that the performance of B is on average
better than that of A or MemSQL is largely due to the fact
that its implementation has automatically performed a full
sort after the initial load (at the expense of load time), while
MemSQL has data in exponentially decaying sorted runs and
A has data only sorted within segments.

We then start a write workload that conforms to the TPC-
H specification, and consists of singleton inserts and deletes

with an equality predicate. We evaluate the read query
performance 5 minutes after the write workload started,
without stopping the write workload. The performance
degrades slightly for MemSQL, and noticeably for A and for
B. The performance in the presence of the write workload is
shown on Figure 5. For several queries, performance did not
noticeably degrade for A or for B - this corresponds to those
queries which cannot make effective use of a projection sort
order, for example because they scan the full table with no
filter. For the majority of the queries, however, both A and B
performed noticeably worse with concurrent writes because
the row ordering was no longer optimal and in some cases
may have even forced a significant change in query plan, such
as using hash grouping in place of a streaming grouping
operation that makes use of sorted runs.

Fig. 5. TPC-H comparison with concurrent write queries running.

To emphasize the difference, consider the change in
performance for each of the three databases separately. Note
how for the database A the overall performance degraded
slightly on most of the queries, and significantly on two of
them. For the database B performance on several queries
degraded significantly as well. MemSQL’s performance
stayed almost the same in the presence of the write queries.

Fig. 6. Change in performance for database A

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10111213141516171819202122

A B MemSQL

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10111213141516171819202122

A B MemSQL

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10111213141516171819202122

Before After

Fig. 7. Change in performance for database B

Fig. 8. Change in performance for MemSQL

B. Real World AdTech benchmark

The second use case we consider is an adtech workload
centered on the following schema

CREATE TABLE users_categories
 (user_id BIGINT NOT NULL,
 category_id BIGINT NOT NULL,
 observation_time BIGINT NOT NULL,
 load_id BIGINT NOT NULL);

The table contains observations on which users have been
observed to be in which cohorts. A category corresponds to
an interesting criteria - for example, having read an ICDE
paper. The observation time records when the user was
observed to belong to the category - observations older than
a cutoff date (e.g. 30 days in the past) are discarded for all
analyses.

The first set of queries which the workload requires are
overlap queries, which have variations of the following form

SELECT COUNT(*) FROM (SELECT

 user_id,

 (MAX(category_id = 1234) AND

 MIN(category_id != 2345)) AS

relevant

 FROM users_categories

 WHERE category_id = 1234

 OR category_id = 2345

 GROUP BY user_id

 HAVING relevant = TRUE)

 AS distinct_relevant_users;

This query produces a count of the distinct users who
have been observed to belong to category 1234 and have
never been observed to belong to category 2345. In general
this family of queries finds counts of users satisfying an
arbitrary set of membership constraints over a small constant
number of categories. The family of queries powers both
human-visible dashboards and automatic systems. In the
former case it must have consistent response times within a
second; in the latter, response times must be within a couple
tens of milliseconds. Note that the filter can be served very
well by segment elimination when we have a projection on
the category_id column - the query will spend minimal time
scanning rows that are not immediately relevant to the
particular query instance.

The second set of queries which the workload requires are
inserts (typically in the form of LOAD DATA for bulk
loading). Data is loaded immediately and continually as it is
received from external services. Typical ingest batches range
from tens of rows (efficiently handling such excessively
small batches is an important property) to tens or hundreds of
millions of rows. Such rows must immediately become
visible to read queries.

The third set of queries are deletes. Data beyond the cutoff
date is deleted. Note that by this point, the rows will be
physically spread through the storage layer - many or all
segments will be modified by a deletion.

The fourth set of queries are updates, or more specifically
batch reloads. A regular event is for previously ingested data
to be found to be inaccurate or incomplete. In this case
previously loaded rows must be removed and corrected
versions submitted, transactionally and without interruption
to the read workload. Such jobs take the form of

BEGIN TRANSACTION;

DELETE FROM users_categories

 WHERE load_id = 3456;

LOAD DATA INFILE …

 INTO TABLE users_categories (…)

 SET load_id = 4567;

COMMIT;

Because the projection key does not align with the load_id
(which is used to tag ingest batches for this express purpose),
the affected rows are typically well spread through the
system. A reload is expected to affect most or all of the
current set of segments.

The final query is a batch processing job, which is used to
compute pairwise overlap between categories.

SELECT t1.category_id, t2.category_id,

 COUNT(DISTINCT t1.user_id)

FROM users_categories t1,

 users_categories t2

WHERE t1.user_id = t2.user_id

 AND t1.category_id < t2.category_id

GROUP BY t1.category_id, t2.category_id

0

50

100

150

1 2 3 4 5 6 7 8 9 10111213141516171819202122

Before After

0

10

20

30

40

50

1 2 3 4 5 6 7 8 9 10111213141516171819202122

Before After

For this query, we use a secondary projection (see [1] for
a discussion of multiple projections) ordered along the
user_id column in order to facilitate a streaming merge join.
Note that this enables the critical optimization of converting
the COUNT(DISTINCT t1.user_id) into a COUNT(*) after
pushing the DISTINCT down into the table scan. The hash
table required to service the GROUP BY already extends to
tens or hundreds of millions of buckets - if each bucket were
itself to take space proportional to the distinct user count,
timely query execution would be infeasible. Ordered iteration
of the projection key, even in the face of continual inserts, is
key to enabling this query.

The workload for this section consists of a family of
twenty queries described above, with 200 billion rows loaded
into the users_categories table. Ingest and deletion rate are
each 100,000 rows per second, with reloads accounting for
an average of 5,000 rows per second. For MemSQL we use a
cluster of 8 nodes in the public cloud, each equipped with 8
cores. For A we use this same hardware, while for B we use
a cluster of 16 machines with 4 cores each.

Each query has selective predicates over the projection
key, which allows an optimized implementation to scan a
small fraction of the total row count. We continually ran the
queries one at a time against each system over a twenty
minute period and recorded response times.

For the MemSQL column store engine the average query
execution time was 0.028 seconds, with first and third
quartile response times at 0.015 and 0.034 seconds. The
implementation is extremely resilient to a mixed and
continuous write workload, and is able to provide
responsiveness capable of driving automatic as well as
human-facing systems.

For A the average query execution time was 2.11 seconds,
with first and third quartile response times at 0.86 and 2.86
seconds. We believe that the penalty in performance is
primarily due to two effects. First, segment elimination is
performed with coarser granularity, causing system A to
process many more rows than the query semantics and data
set require. Second, write operations and background storage
optimization in this system can cause concurrent reads to
block while heavy storage optimization operations proceed.
However, the system does maintain relatively good variance
in query latency.

For B the average query execution time was 8.02 seconds,
with first and third quartile response times at 4.27 and 14.23
seconds. As noted in the discussion of the TPC-H benchmark,
B automatically performs a full sort after initial data loads. In
the presence of an ongoing write workload it does not
maintain this full sort order, which in many cases causes it to
resort to scanning large fractions of the table.

VIII. RELATED SYSTEMS

There are many column store databases that are widely
used in production environments today, as well as hybrid
column- and row-store databases, such as DB2 BLU [5] and
SAP HANA [6] [9]. Two particular column store databases

that are known to leverage sorted order on the data are
Amazon RedShift [7] and HP Vertica [4]

Amazon RedShift does not maintain sorted order in the
presence of concurrent writes. It sorts the data after the initial
load, but subsequent writes populate their rows in a separate
unsorted region [2]. A manual VACUUM command is
necessary to bring the data into a sorted order again. The high
overhead imposed by this command (which must be run to
allow performant reads) makes the system unsuitable for
analytical workloads in the presence of continuous data
ingestion.

Vertica maintains exponentially growing segments (ROS
container in their terminology), that they maintain efficiently
in the presence of concurrent writes [4]. However, large
segments do not allow for efficient segment elimination
unless an efficient mechanism exists to perform elimination
on subsections of a single segment. To the best of our
knowledge there is no literature on such an implementation
involving Vertica ROS containers.

IX. CONCLUSIONS

In this paper we have presented the MemSQL column
store engine, with an architecture designed to provide
scalable, low latency queries over a vast and continually
changing data set. We believe that existing column store
systems leave much on the table by restricting themselves to
bulky and awkward ingestion schemes. An integrated design
that considers both storage maintenance and constantly
evolving data will not just improve performance along the
traditional strengths of column store systems. It will also
enable their strengths to be leveraged against problem
domains that require promptness and analytical capabilities
over large data sets, such as adtech, financial services, fraud
detection, and real-time analytics applications.

REFERENCES

[1] M. Stonebreaker et al, “C-Store: A Column-oriented DMBS”,

VLDB, pages 553-564, 2005.

[2] Vacuuming Tables, Amazon Redshift Database Developer Guide,
http://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage

_space202.html

[3] Daniel Abadi, Peter Boncz, Stavros Harizopoulos, Stratos Idreos and
Samuel Madden, "The Design and Implementation of Modern

Column-Oriented Database Systems", Foundations and Trends® in
Databases: Vol. 5: No. 3, pp 197-280, 2013.

[4] Andrew Lamb, Matt Fuller, Ramakrishna Varadarajan, Nga Tran,

Ben Vandiver, Lyric Doshi, Chuck Bear, "The Vertica Analytic

Database: CStore 7 Years Later", Proceedings of the VLDB
Endowment 5.12 (2012): 1790-1801

[5] Raman, Vijayshankar, et al. "DB2 with BLU acceleration: So much

more than just a column store." Proceedings of the VLDB
Endowment 6.11 (2013): 1080-1091.

[6] Färber, Franz, et al. "SAP HANA database: data management for

modern business applications." ACM Sigmod Record 40.4 (2012):
45-51.

[7] Mathew, Sajee, and J. Varia. "Overview of amazon web services."

Amazon Whitepapers (2013).

http://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html
http://docs.aws.amazon.com/redshift/latest/dg/t_Reclaiming_storage_space202.html

[8] Council, Transaction Processing Performance. "TPC-H benchmark

specification." Published at http://www.tcp.org/hspec.html (2008).

[9] Sikka, Vishal, et al. "Efficient transaction processing in SAP HANA

database: the end of a column store myth." Proceedings of the 2012

ACM SIGMOD International Conference on Management of Data.
ACM, 2012.

[10] O’Neil, Patrick, et al. "The log-structured merge-tree (LSM-tree)."

Acta Informatica 33.4 (1996): 351-385.

[11] Boncz, Peter A., Marcin Zukowski, and Niels Nes.

"MonetDB/X100: Hyper-Pipelining Query Execution." CIDR. Vol.

5. 2005.

