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Abstract— This paper describes novel aspects of the column 

store implemented in the MemSQL database engine and 

describes the design choices made to support real-time 

streaming workloads. Column stores have traditionally been 

restricted to data warehouse scenarios where low latency 

queries are a secondary goal, and where restricting data 

ingestion to be offline, batched, append-only, or some 

combination thereof is acceptable. In contrast, the MemSQL 

column store implementation treats low latency queries and 

ongoing writes as first class citizens, with a focus on avoiding 

interference between read, ingest, update, and storage 

optimization workloads through the use of fragmented 

snapshot transactions and optimistic storage reordering. This 

implementation broadens the range of serviceable column store 

workloads to include those with more stringent demands on 

query and data latency, such as those backing operational 

systems used by adtech, financial services, fraud detection and 

other real-time or data streaming applications.  

Keywords—columnstore, columnar, realtime, memsql, tpch, 

analytics, concurrency, streaming 

I. INTRODUCTION

Many modern analytical databases are based on column 
store engines. Column stores have many advantages for 
analytical queries, such as highly optimized compression and 
fast table scans. Relative to row stores, they tend to suffer on 
workloads that require selective filters, as column stores 
cannot leverage index seeks. Column stores are primarily 
optimized for queries that scan most or all of a table. 
Compression and column pruning vastly reduce disk IO, and 
processing can be optimized with vectorized execution, code 
generation, and by running operations directly on compressed 
data [5] [11]. 

With the addition of a sort order, often called a sorted 
projection, several new patterns of optimized queries are 
enabled. Operations on small key ranges, such as SQL 
BETWEEN queries, can be executed with low variance 
latencies. In many cases, after examination of memory-
pinned file metadata, only a single disk IO will be required to 
service a query. Heavier queries can also be significantly 
improved - for example, two large tables could be joined with 
a merge join algorithm, or a distributed grouping operation 
could be performed in a streaming manner and with constant 
space overhead. 

However, these improvements in latency tend to be most 
required by systems that have a transactional write aspect to 
them - for example, providing an analytical dashboard over a 
live stream of data. To support such workloads, static sorted 
projections are of no use. Allowing online write operations is 
a requirement. Despite this, popular column store databases 
either do not support sorted projections or fail to efficiently 
maintain them in the presence of continuous data ingestion, 
which restricts their use to data warehouse scenarios. 

In this paper we describe an implementation of column 
store projections which treats low latency queries as a first 
class citizen alongside batch processed analytics. It enables 
transactional and analytical queries to leverage fast selective 
filters alongside concurrent, continuous data ingestion and 
modification, with asynchronous storage reordering allowing 
data to be accessible to reads immediately after ingestion. 

The approach differs from those of other state-of-the-art 
column store engines in several key aspects. It maintains 
groups of rows in an order that allows for fast seeks and can 
be efficiently maintained during concurrent data ingestion. It 
leverages snapshot isolation level to reorder rows in a 
background thread with constant disk and memory overhead, 
and without interfering with concurrent read queries. It uses 
an optimistic reordering technique that does not interfere with 
concurrent updates and deletes. And finally, it enables a wide 
range of workloads which depend on data being visible to 
read queries immediately after ingest, and which have 
traditionally been unattainable for column store engines. We 
describe these techniques in detail, and provide an 
experimental performance comparison with two state-of-the-
art column store databases. 

A. MemSQL Architecture

MemSQL is a distributed SQL engine with a two tiered
architecture consisting of scheduler nodes and execution 
nodes. It contains two primary backing data formats: an in-
memory skip list-backed rows store and a disk/SSD-backed 
column store, each of which can be selected on a per-table 
basis and the latter of which is the main focus of this paper. 
MemSQL makes use of an advanced distributed query 
planner and optimizer. However the details of distributed 
query execution are orthogonal to the concerns of low-
latency processing that we discuss in this paper, and in fact 
for the most part the distributed component of our query 
optimizer does not distinguish between row store and column 



store tables. MemSQL also makes use of other advanced 
implementation techniques including runtime code 
generation, automatic parameter detection and distributed 
transactions. These features are largely unrelated to our 
treatment of a low latency column store engine, and we do 
not discuss them further. 

B. Paper Structure 

In section 2, we review the relevant storage concepts for 
column store systems. In section 3, we introduce our 
treatment of segment elimination. In section 4, we introduce 
our treatment of sorted runs, which we expand with 
projection maintenance concerns in section 5. In section 6 we 
discuss real-world practical considerations of our system. 
Section 7 contains experimental results, which section 8 
fleshes out with a discussion of related systems. 

II. BACKGROUND CONCEPTS 

For an overview of the architecture and implementation 
of modern column stores, see [3]. Here we review the 
concepts most relevant to building a column store system that 
handles operational queries in the presence of a continual, 
online write workload. We focus mainly on the organization 
of rows into larger units, namely segments, sorted runs, and 
projections. 

A. Segments 

In a column store, each column of the source table is 
stored separately, to allow independent compression and 
query access. To allow flexibility in implementation, as well 
as amortization of costs such as disk seeks, tables are also 
partitioned horizontally into subsets of rows which we call 
segments. Each row belongs to exactly one segment. Each 
segment will typically contain between tens of thousands and 
millions of rows, depending on the details of the workload. 

For each segment, several items are maintained. There is 
a file on disk per column of the table, storing the appropriate 
values. There is also a metadata representation of the 
segment, held in a durable in-memory data structure (in fact, 
a MemSQL row-store table). The metadata representation 
stores the file locations and a bit vector marking logically 
deleted rows. It also stores optimization-related information, 
including encoding schemes and the maximum and minimum 
projection key values represented in the segment. 

With this representation, inserts and deletes are 
straightforward. Inserts always create a new segment (or 
multiple new segments, for large inserts), while deletes 
update the metadata representation to mark rows as logically 
deleted. Updates are implemented as deletes followed by 
inserts (within a single transaction). 

B. Projections 

Projections have a purpose analogous to that of a row 
store table's indexes. They allow seeking to a particular key 
value or key range in order to optimize query performance, 
though only to the granularity of a single segment. They can 
also be leveraged to provide ordered iteration of rows, 

although unless care is taken, this property degrades easily in 
the presence of an ongoing write workload. 

As with row store indexes, it can be valuable to have 
multiple projections on the same table, allowing efficient 
access along several keys. In this paper we consider only 
maintaining a single projection. Maintaining multiple 
projections is an orthogonal problem, and is described in 
detail in [1]. 

Query optimization and execution techniques can 
leverage the projection sort order both internally within a 
single segment, and externally across multiple segments. On 
the left of Figure 1 is an example of two segments sorted 
internally but not externally - the ranges [1, 108] and [3, 72] 
overlap. On the right of Figure 1 is an example of two 
segments sorted both internally and externally. 

 

Fig. 1. Two approaches to sorting data in segments. 

Internal sorting is supported by majority of column store 
databases. It is easy to maintain as the data is inserted or 
modified, but it also provides only a limited value to the 
optimizer and the query execution engine. In many cases the 
cost of going to disk and decompressing overshadows any 
savings from intra-segment seeking. External sorting, and, in 
particular, maintaining all the rows in a perfectly sorted order, 
is a harder problem that is the main focus of the remainder of 
this paper. 

III. SEGMENT ELIMINATION 

In some cases, in particular when we have external 
sorting, queries with selective filters can employ a technique 
that we call segment elimination. Segment elimination is a 
procedure that avoids opening a segment if that segment is 
guaranteed not to contain rows that match the filter. For 
example, if the segment has only values in the interval [1, 
100], and the query predicate only keeps values greater than 
150, we do not need to open or decompress this segment at 
all. To enable segment elimination, we store the minimum 
and maximum key value in the per-segment metadata. Note 
that it is not necessary to maintain these values in the 
presence of deletes (and thus updates) - segment elimination 
is a safe heuristic. 

A complementary approach, which we term full 
enclosure, is also available. If a query predicate can be seen 
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to be true for all values in a segment, certain aggregates can 
be computed directly from metadata. For example, the 
following query 

SELECT COUNT(col) 

FROM   table 

WHERE  col > 100 AND col < 300; 

when run over four segments with intervals [0, 150], 
[150, 250], [250, 400] and [400, 500], can leverage both 
segment elimination and full enclosure. Only the first and the 
third segments need to be opened. The second segment is 
fully enclosed by the filter, so its minimum value can be taken 
from the metadata, and the forth segment can eliminated, 
since its interval is outside of the range of the filter. 

Note that segment elimination can be similarly performed 
on raw column values, without explicitly maintaining a sort 
order. However projections maximize the usefulness of the 
technique. 

IV. SORTED RUNS 

Sorted runs are the foundation upon which we implement 
projections. A sorted run is an ordered set of segments such 
that the minimum value of every segment in the set is larger 
or equal to the maximum element of the preceding segment 
in the set (we say also that segments in the run are externally 
sorted). For instance, if the key of the projection is a single 
integer column, then the segments that are presented on 
Figure 2 on the left can be combined into sorted runs in 
several ways, as shown on Figure 2 on the right. The smallest 
number R of sorted runs into which a given set of segments 
can be partitioned is an important value, because in case of a 
seek for a specific value v at most 2𝑅 + 𝑘 segments must be 
opened, where k is number of segments whose interval is [v, 
v].  

To see this, we first consider all k segments with interval 
[v, v]. Clearly these must be opened, so we add k  to our count 
and remove them from consideration. For each run, the value 
v  must then be either in the interval of no segments, in the 
interval of a single segment, or on the boundary of at most 
two adjacent segments. 

It is desirable to limit the number of sorted runs that the 
segments form. The smaller the number of sorted runs, the 
fewer segments that need to be opened to process a query that 
seeks for a single value, or a query with a selective filter in 
general. 

 
Fig. 2. Sorted runs. 

Certain kinds of data are naturally distributed in such a 
way that the number of sorted runs will be very low. Most 
commonly, if the projection is sorted on a time-based column, 
and rows are created and inserted in roughly chronological 
order, segments will partition into very few runs even without 
reordering. 

However, for most of the columns the distribution does 
not naturally align with the order in which the data is inserted, 
and there will be almost as many sorted runs as there are 
individual segments, making it impossible to effectively 
perform segment elimination. 

In order, then, to partition a set of segments into the 
fewest sorted runs, we use the following algorithm, costing 
𝑛 log 𝑛 time: 

1. Initialize the set of sorted runs S to an empty set 

2. For every segment in the order of increasing minimum 
value: 

2.1. If there's a sorted run in S, that has the maximum 
value in it smaller than the minimum value of the current 
segment, add the current segment to that sorted run. 

2.2. Otherwise, add a new sorted run to S, consisting only 
of the current segment. 

3. Set S contains the smallest number of sorted runs that 
the input set of segments can be split into. 

A. Exponentially Decaying Sorted Runs 

Ideally we would want all rows in the table to form a 
single sorted run. With such an ordering, the overhead of any 
equality seek or range scan is at most two segments' worth, if 
we consider overhead to be work spent scanning rows that do 
not satisfy the predicate. However, in a presence of 
continuous data ingestion this is not a feasible approach 
because every insert or load could require resorting the entire 
table. Note that except in the case of naturally clustered data 
(as with a time-based projection key) this is not only a worst 
case, but rather a common case, because we expect fresh data 
to be fairly well distributed throughout our key range. Since 
one of our goals is for reads to see new data immediately after 
getting loaded, we discard this approach. Note that the 
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problem still exists even if the new batch is internally 
ordered. 

An alternative approach, used in the core of the MemSQL 
column store engine, is to maintain one large sorted run that 
has at least half the rows in the table, another sorted run that 
has at least half of the remaining rows, and so forth. With this 
structuring, the number of sorted runs does not exceed log 𝑠, 
where s is the total number of segments. We also have the 
property that ingesting a new batch of rows will only require 
amortized 𝑘 log 𝑠 time to update the order, where the new 
batch comprises k total segments. This idea is similar to that 
of LSM trees [10]. 

In practice, we have found it optimal to use a larger decay 
ratio. The MemSQL column store engine uses a constant of 

8, so that the biggest sorted run has at least 
7

8
 of all the 

segments, the second biggest sorted run has at least 
7

8
 of the 

remaining segments, and so forth. There is a tradeoff between 
the constant factor in the data ingestion performance and 
constant factor in performance of reads that can leverage 
segment elimination. Higher multiplier makes data ingestion 
slower, but at the same time improves the performance of the 
reads. 

V. MAINTENANCE OF SORTED RUNS 

The addition of new segments due to inserts and updates 
disturbs the invariant of exponentially decaying sorted runs. 
To restore the invariant, it becomes necessary to reorder and 
repartition rows across segments. Because segments are 
sorted internally as well as externally, merge sort is a natural 
way to redistribute rows across segments. The algorithm to 
redistribute rows across multiple segments is the following: 

1. Split the segments into the smallest number of sorted 
runs 

2. While number of sorted runs is greater than 1: 

2.1. Group sorted runs into pairs of similar size 

2.2. For each pair, merge two sorted runs in that pair into 
one 

The body of the loop at step 2 is a very expensive 
operation that rewrites all the segments in the segment group. 
It is being executed log2 𝑛 times, where n is the number of 
input sorted runs. Because of this, in practice it makes sense 
to merge more than two segments at a time so that the base of 
the logarithm is higher and the number of iterations is 
smaller. 

We also revisit the merge step of the merge sort 
algorithm, modified to work properly with sorted runs. We 
consider the merge of two sorted runs, but it can be easily 
extended to arbitrarily many sorted runs: 

1. For each sorted run, initialize an iterator at the first row 
of the first segment in that sorted run. 

2. Initialize a new empty segment. 

3. While neither of the iterators is saturated: 

3.1. Read current row from both iterators. 

3.2. Write the smaller of the two rows into the new 
segment. 

3.3. If the new segment is bigger than the segment size 
threshold, write it to disk, and initialize a new segment. 

3.4. Advance the iterator that had the smaller row. 

4. For each row in the sorted run that was not saturated, 
move it to the new segment, writing it to disk and resetting 
when necessary.  

5. Delete all the input segment files. 

In order to maintain the exponentially decaying sorted 
runs, we perform several steps on insert. Each time a new 
batch of data is inserted it is fully sorted internally before the 
transaction completes. Due to this, the newly introduced rows 
form at most one additional sorted run, even if they 
correspond to multiple segments. Then if that run is larger 

than 
1

8
 of the smallest sorted run they are merged together. If 

the resulting sorted run is larger than 
1

8
 of the next smallest 

sorted run, then they are merged together as well. 

With care in the implementation, it is possible to closely 
estimate how many segments will result from merging sorted 
runs. Our implementation inspects the segment metadata for 
present and deleted row counts to determine the length of the 
resulting run. This information is used to collapse multiple 
iterations of merging into a single round in cases where a 
small trailing run would be produced and then immediately 
enter the merging process again - instead we merge with the 
additional run immediately. 

A. Reads During Sorting 

In order to allow reads while merging is underway, it is 
important that the reads have a consistent view of the data. In 
particular, new segments produced by the merge cannot be 
immediately made visible to concurrent reads. If a concurrent 
read sees the new segment, it may either encounter duplicate 
rows (from another segment that was partially consumed by 
the merge to produce the new segment), or may miss rows if 
the partially consumed segment is relocated in the metadata 
index and thus missed entirely. These issues are similar to 
those that could be observed due to a concurrent update in a 
READ COMMITTED isolation level transaction - and 
indeed, one way to look at merges is as an UPDATE that 
happens to not change any column values. However because 
these update-like operations are generated internally by the 
engine's background process, instead of by explicit queries in 
the user workload, it is important that they cause no 
anomalies. 

To address this issue, queries against the column store 
engine are served with SNAPSHOT isolation level. With 
SNAPSHOT isolation, the background sorting process is 
entirely transparent to read queries. 

However, wrapping merges in a big transaction has an 
additional downside. While the merge is underway, disk 



usage of the affected rows is doubled. If we are merging the 
largest segments in the table, this can mean almost doubling 
the disk usage of the whole server. 

The approach that we use in MemSQL column store 
engine is to commit immediately as a new segment is written, 
and mark all the rows in the input segments that were already 
moved to the new segments as deleted as part of the same 
transaction. If some segment was completely saturated as part 
of a merge step, it is deleted from the metadata entirely, and 
all its files are erased from disk, as part of the transaction that 
writes the new segment onto disk. Because reads are served 
with SNAPSHOT isolation, each query will see the correct 
set of rows. 

This approach has an important properly that it will only 
use a constant extra disk space. If the merge sort algorithm 
merges k segments at a time, then at most k extra segments 
can exist on disk simultaneously, assuming that all the 
segments have the same number of rows. The particular 
scenario in which case this worse case occurs is when all the 
iterators of the merge sort are pointing to the last rows of their 
corresponding segments.  

B. Writes During Sorting 

The merge sort algorithm introduced above needs to 
properly handle concurrent write queries. There are two 
challenges to consider: 

1. After the smallest set of sorted runs is found, but before 
the sorting finishes, segments may be removed or introduced 
by concurrent writes. This can result in the smallest set of 
sorted runs being changed. 

2. As we process segments and write new segments, 
concurrent writes may want to change those same segments. 
The merger must either lock the segments it processes or 
employ some optimistic concurrency control technique. 

1) Handling changes in sorted runs 
To address the set of sorted runs being changed as we sort 

it, first we claim that the process of building the sorted runs 
requires amount of time negligibly small compared to the 
actual merging algorithm. This is because it is a metadata-
only operation with a very low time complexity, while 
merging involves intensive disk IO. Thus, we can recompute 
the sorted runs periodically - every so many merges, or after 
writing every so many new segment. In the common case 
(over half of the time) when the merge involves only a few 
segments in several small runs, concurrent modifications can 
be handled by aborting and rolling back the entire merge 
operation and trying again - in this case the lost work is not 
significant. When merging a larger number of segments 
where losing work becomes expensive, we simply skip over 
any missing segments, and ignore any new segments. Note 
that removing any number of segments from a sorted run does 
not destroy the ordered property of the remaining segments. 
Therefore, regardless of how many segments are removed 
concurrently, the merge will produce precisely one sorted run 
as output, and take time proportional to the length of this 

output run. Therefore the background merging process will 
always make reasonable progress. 

The type of writes that interferes with merges the least is 
deletes. If a segment has been partially or entirely deleted, the 
merge will simply skip that segment. It results in a smaller 
sorted run being produced than anticipated. However, the 
criteria to choose which sorted runs to merge was such that 
the resulting sorted runs is no larger than some fraction of the 
next biggest sorted run. Clearly, skipping input segments 
cannot violate this constraint. 

Inserts can interact with sorted runs in very unintuitive 
ways. In particular, introducing new segments can change the 
way existing segments are distributed among sorted runs. To 
see why, consider an example of two segments [1-50] and 
[150-200]. Clearly, they form a single sorted run. However, 
if two more segments were introduced, with ranges [1-110] 
and [90-200], then the smallest set of sorted runs is ([1-50] 
[90-200]) and ([1-110] [150-200]), in other words the 
segments that were previously in the same sorted run are now 
belong to two different sorted runs. Thus, an insert can result 
in a segment moving from a small sorted run which was due 
for merging to a much larger run which is not due for 
merging, after recomputation of the ideal partitioning of 
segments into sorted runs. The most straightforward way to 
address this is to not replan which merges to perform until all 
currently planned merges have been completed. Therefore, 
even though the execution of the merges will itself use many 
small snapshot transactions, the planning and scheduling of 
these merges is based on a single up-front snapshot of 
metadata which is explicitly not updated as execution 
proceeds. We discuss this further in the section on practical 
considerations below. 

Updates in general can be considered as deletes followed 
by inserts within a transaction. As long as both deletes and 
inserts are handled properly, updates will be as well. 
However, for some classes of updates, operation behavior 
and performance of the system can be improved significantly 
by playing nicely with the background merging process. In 
particular, if an update modifies all rows in a segment but 
does not change the segments key interval (for example, by 
modifying only columns which are not part of the projection 
key), then the merging process can substitute in the updated 
segment rather than skipping it. This causes the background 
process to converge to a stable state sooner, since the state of 
the engine more closely resembles the state for which the 
preplanned schedule was derived. 

2) Handling concurrent access to a single segment 
To handle writes attempting to change a segment which 

is concurrently being read by the background merging 
process, a way of resolving concurrent accesses is needed. 

One way would be for merging to lock all the segments it 
is currently reading from. The maximum number of segments 
being merged at a time is bounded by the exponential decay 
and merge fan-in ratio (8 in the case of the MemSQL engine). 
However such an approach would increase the latency of 
concurrent writes waiting to acquire the same locks. In 



particular, the worst case scenario involves merging a single 
segment whose key interval is large with a long run. For 
example, Figure 3 shows an example where a sorted run 
consisting of a segment with minimum value of 1 and 
maximum value of one thousand is being merged with a 
sorted run of segments, each containing a small range of 
values. 

 

Fig. 3. Worst case for pessimistic locking. 

In this worst case scenario the segment that spans a large 
range of values will stay locked for the entire merge operation 
(taking time proportional to the sum length of all sorted runs 
involved in the merge) because it has rows that need to be 
merged with segments at the both ends of the other sorted 
runs. 

Unfortunately, such a scenario is very likely to happen in 
practice because the existing segments that currently form 
long sorted runs usually span a very small range of values 
while new segments that are inserted tend to span almost the 
entire range of possible values. 

In order to avoid this pitfall, we use optimistic 
concurrency control. Merging does not take lock on segments 
as it processes them. Locks are taken only when a transaction 
is ready to be committed. Every time the merger is ready to 
write a new segment to disk it verifies that all the input 
segments that contributed to that segment still exist and that 
all the rows that were merged in have not been deleted by 
concurrent writes. If this is not the case, it rolls back all 
iterators to the positions they were before the last output 
segment was populated, and discard the new segment. If any 
input segment that the iterators are currently pointing at was 
completely deleted, the corresponding iterator simply 
advances to the next segment in its sorted run. If a subset of 
the rows in a segment were deleted then the new output 
segment can be regenerated, skipping the deleted rows on the 
second pass. 

We consider the impact on the performance of the merger 
of using the optimistic approach. We assume that writes 
proceed at approximately the same speed as the merge. 
Clearly, new data being ingested does not interfere with the 
merger because the merger operates on a snapshot of the 
metadata. Updates which affect many consecutive rows have 
a low probability of interfering with the merger because the 

time it takes to update one segment's worth of rows is 
comparable to time it takes for merger to produce a new 
segment. Thus the probability of such an update to change the 

segment that is being merged has an upper bound of 
1

𝑛
, where 

n is the total number of segments. A more precise estimation 
for the case when the merger is slower than the writes is 
derived below. 

However, deletes and updates of individual or well-
distributed rows need to be handled separately. In the 
presence of queries that update few rows across many 
segments, the chance of modifying one of the segments that 
is being merged is very high and this can result in starvation 
of the merger if it retries each time. To address the problem 
we optimize this case to track exactly which rows were 
merged into the new output segment. As we commit we 
check if any of them were deleted. If any were concurrently 
deleted then in place of discarding the segment and starting 
over, we mark those rows as deleted in the output segment 
before writing it to disk. Newly created segments can 
therefore already contain tombstoned rows. We only trigger 
this optimization if the fraction of concurrently deleted rows 
falls below a certain threshold because introducing segments 
with a significant fraction of deleted rows negatively impacts 
both disk usage and query performance. The value of the 
threshold is a tradeoff. Higher values will result in higher disk 
usage and some penalty on select but will provide faster 
merges since fewer restarts will be necessary. Lower values 
will result in lower disk usage but will slow down merges. 

To get a better sense of how the merger is affected by the 
write queries in practice where the performance of the merger 
is not necessarily equal to the performance of the writes, we 
derive the effect of write queries on a concurrent merge more 
precisely for several cases. We will consider separately two 
scenarios: when the updates are modifying rows that are 
located consecutively within the segment, and when the 
updates modify the rows randomly with respect to the 
projection key. 

Let us examine how likely it is for such an update to 
modify a segment that is being processed by the merger. 

We assume that the ratio between the throughput of the 
updates and the throughput of the merger in terms of the 
number of rows written per unit time is r, which for simplicity 
we will assume to be an integer, and the total number of 
segments is n, with all segments containing a similar number 
of rows. We will assume that there are on average s rows per 
segment. We will also assume that the merger processes m 
segments at a time, and that it will only start the work over if 
one of the input segments was completely removed or if the 
fraction of the rows that were merged into the new segment 
that were deleted concurrently was higher than d. Recall that 
the merger commits a transaction every time it has a full 
segment's worth of data ready to be written to disk. Thus it 
will conflict with an update only if the update managed to 
change one of the input segments in the time duration it took 
the merger to produce one output segment. That time is 
sufficient for the update to produce r segments, which, due to 
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the fact that the rows were read consecutively, implies that at 
most r + 1 segments were affected. Either r - 1 segments were 
completely deleted and two segments partially deleted, or r 
segments were completely deleted. The probability that one 
of these r - 1 (or r) segments was being merged is 

1 − 

𝑠 − 1
𝑠

(𝑛−𝑟+1
𝑚

) +
1
𝑠

(𝑛−𝑟
𝑚

)

(𝑛
𝑚

)
  

The two remaining segments, which were only partially 
affected, would only make the merger restart if it read from 
one or both of them, and between them processed more than 
ds rows that were deleted concurrently. We do not provide a 

tight bound for this probability, but it does not exceed 
1

𝑛
 for 

the cases when 𝑑 >
1

𝑚
. 

For the case of updates that modify a random set of rows 
the derivation is simpler. It is the probability that out of rs 
rows that were changed more than ds were among the s rows 
we read. The probability of that is 

1 − ∑
( 𝑛𝑠−𝑠

𝑟𝑠−𝑑𝑠+𝑖
)( 𝑠

𝑑𝑠−𝑖
)

(𝑛𝑠
𝑟𝑠

)

𝑑𝑠

𝑖=1

 

Knowing the expected values of n and s, we can derive 
the values of m and d that give the best value of r and an 
acceptable likelihood of restarting the merge. For instance, 
we consider a system that stores 10,000 rows per segment, 
has around 1000 segments worth of data, expects writes to be 
5 times as fast as the merger, merges 8 segments at a time, 
and does not roll back the merged segment if number of 
deleted rows does not exceed 12.5% of the total number of 
rows merged. In such a system the probability of a random 
update to interfere with the merge is negligibly small, and the 
probability of an update that updates consecutive rows to 
interfere with the merger is 4%. Increasing expected number 
of segments to 10000 or decreasing the ratio between writes 
and merger performance to 2, brings that probability down to 
1%. Changing number of rows per segment does not have a 
significant effect. 

C. Concurrent Merges 

In certain scenarios, some of which we consider below, it 
is desirable for multiple merges to occur simultaneously on 
the same set of segments. For example, while two very large 
sorted runs are being merged, it might be desirable to merge 
several smaller sorted runs to get immediate performance 
benefits. If two merges operate on two disjoint sets of sorted 
runs, then they will not interfere with each other in any way, 
which allows the introduction of concurrent merges. 

One way to ensure that concurrent merges never attempt 
to merge the same sorted run, or sorted runs that share a 
segment (the same segment at different moments of time can 
belong to different sorted runs) is for the merger that started 
earlier to mark all the segments it is planning to merge, and 
for any concurrent merge to disregard such marked segments 
during its planning stage. 

VI. PRACTICAL CONSIDERATIONS 

In practice it is not always feasible for merges to be as fast 
as the concurrent inserts. If they were as fast, it would mean 
that in their absence twice as must data could have been 
ingested, assuming that the disk is the bottleneck, and 
reducing the peak ingestion speed by a factor of two to 
maintain the projections is not always an acceptable tradeoff. 

In this section we present several techniques that make 
projections usable in practice, when concurrent data ingestion 
and other write queries outperform merging. In particular, we 
aim for projection maintenance to be as asynchronous as 
possible so that for time-varying workloads we have minimal 
resource requirements at times of peak workload intensity. 

A. Fast and Slow Mergers 

A critical observations is that merging two large sorted 
runs and merging two small sorted runs result in the same 
expected improvement in performance of the read queries 
that can leverage sorted order. Merging either of the pairs 
would result in reducing the number of sorted runs by one, 
and the worst case complexity of the read queries with high 
selectivity is proportional to the number of sorted runs. With 
only a single background merging process, if it becomes 
occupied merging two very large sorted runs, and several 
smaller sorted runs were inserted concurrently, all read 
queries will suffer from poor performance, while a very 
cheap merge operation could have improved it. To address 
this, we have two background mergers - the Fast Merger and 
the Slow Merger, which are distinguished by which size runs 
they process. The Fast Merger processes only runs below a 
certain small cutoff (in MemSQL, this bound is set to the 
length of ten segments), while the Slow Merger exclusively 
processes runs at or above that threshold. Since the fast 
merger only merges small sorted runs it never gets stuck on 
an expensive operation. This way when a new batch of data 
is inserted, if a very small sorted run is created that can be 
quickly merged into another existing sorted run, the fast 
merger will be available to do that with very low latency. The 
slow merger, on the other hand, can work on merging large 
sorted runs for a long time without any regression in 
performance of concurrent queries. Note that while the 
engine endeavors to keep segments at a certain size (e.g. 
100,000 rows each) the user workload may produce vastly 
smaller segments (a handful of rows) as a result of inserts. It 
is especially vital that these anomalously small segments are 
cleaned up as quickly as possible. 

B. Manual Merging 

Techniques such as optimistic merging and splitting 
dividing between fast and slow merges allow for maintenance 
of the projections in the presence of concurrent writes. 
However, in certain cases it is desirable to improve the read 
performance even more by reducing number of sorted runs at 
an accelerated rate, even at the price of temporarily reduced 
write performance. One common such case occurs after an 
initial bulk load when a project or workload is first kicked 
off. To address such use cases, we introduce two manual 
commands that a user can run. The first command allows the 



user to run the algorithm that restores the invariant of 
exponentially decaying sorted runs using a pessimistic 
merger. The pessimistic merger is significantly faster than the 
optimistic merger if there are concurrent writes because it 
will never roll back and lose work, but in the worst case some 
writes might get stuck for a considerable amount of time 
waiting for a lock on a segment. This way the user can restore 
the invariant faster and increase read performance by 
temporarily sacrificing latency of write queries. It is 
important to note than overall time complexity is not 
sacrificed - if the user invokes the pessimistic merger each 
time a new batch of data is loaded, the pessimistic merger will 
still be doing amortized 𝑘 log 𝑛  operations, where k is the 
number of segments that were inserted. The only difference 
is that now it will be taking locks on the segments it 
processes. Thus, if one wants to increase read performance 
by sacrificing update performance, it is a viable approach to 
run the pessimistic merger after each batch is loaded. 

Another command allows the user to entirely sort all the 
segments into one large sorted run. This operation will reduce 
the time taken by all the reads that follow by a factor of log 𝑛, 
which for the case of several thousand segments means at 
least an improvement by a factor of 10. However, it will take 
time proportional to 𝑛 log 𝑛, so it is not viable to use after 
ingesting each new batch of data. It is very valuable in 
practice when workloads have a range of read and data 
freshness requirements. Often this command is used only for 
some tables, or in preparation for running intensive batch 
workloads which benefit from reducing the overhead of 
sorted iteration. 

C. Sorting New Batches 

When a new batch of data is inserted, unless the new rows 
are tightly clustered with respect to the sort key, then it is 
unlikely that any of the segments this batch introduces will 
naturally fit into any of the existing sorted runs. It is also 
unlikely that any two of the new segments will form a sorted 
run on their own. A new batch consisting of n segments is 
likely to introduce n new sorted runs, which will immediately 
be picked up by the fast merger. Until the fast merger 
processes them, the performance of read queries with high 
selectivity will be degraded significantly. For example, if the 
new batch introduced 10 new segments, and the number of 
sorted runs is 8 (log8 𝑛 for n of around 100 millions), then the 
performance of the selects will degrade by a factor of two 
until the fast merger finishes with them. 

Because of these two considerations, we sort the entire 
new batch of data before the transaction commits and the data 
is made visible. 

D. Streaming 

In our analysis above we assumed that write queries 
always insert enough rows to produce full segments (one 
hundred thousand rows per segment is the default in 
MemSQL). Since column stores were originally designed 
with bulk loading of data in mind, such an assumption was 
reasonable. However, our experience indicates that there are 
many practical use cases for column store where it is 

desirable to insert small chunks of data at a time, with batch 
sizes as low as a single row. In the context of a distributed 
database system, this challenge can be significantly 
amplified. If rows are hashed and distributed among many 
partitions on different machines, then each individual 
partition may receive input batch sizes two or three orders of 
magnitude smaller than the application initially provided, 
which are negligibly small compared to the full segment size. 

The naïve approach is to create a new segment for each 
new batch of rows, even if there are not enough to provide a 
full segment. Such an approach invalidates assumptions we 
rely on above. In particular, our analysis of how quickly a 
merger can merge segments in the presence of concurrent 
writes assumes that the segments produced by writes and 
those produced by the merger have approximately the same 
size. However, if the write queries produce significantly 
smaller segments, the merger will fall behind, which will 
result in a lot of very small sorted runs. A high number of 
small sorted runs can in turn cripple read performance. 

Another approach is to employ a buffer that accumulates 
rows as they are ingested, and only writes a full segment 
when enough rows are accumulated. For example, C-store, a 
predecessor of Vertica, describes a write-optimized storage 
designed for the same purpose [1]. The key challenge is that 
read queries must incorporate these buffered rows, so that 
they are visible immediately when the write query commits. 

In our implementation we use our row store data 
structure, namely a lock-free skip list, in front of the column 
store. Each time a write query attempts to insert less than a 
full segment of rows, those rows are inserted into that skip 
list instead. As soon as the skip list has enough rows for a full 
segment, that segment is written to disk and the rows are 
deleted from the skip list in a single transaction. From the 
perspective of the read queries such a skip list is just an extra 
segment, indistinguishable from a segment that is actually 
stored on disk. The skip list naturally stores data sorted, so 
this extra segment is also always sorted. 

It is important to note that some algorithms can leverage 
the internal representation of data in the column store. For 
example, since the data for each column is stored 
consecutively, it is possible to process multiple values in a 
single SIMD instruction. Moreover, some operations can be 
done on compressed data, without even restoring the original 
values. A write optimized data structure, such as skip list, will 
not allow for either of these two optimizations. In practice 
losing these optimizations is not important, because the 
amount of data in the skip list is insignificant relative to the 
amount of data on disk, and the performance degradation due 
to using less optimized algorithms to process data in the skip 
list is negligible compared to total time spent processing all 
the remaining data. 

VII. EXPERIMENTAL RESULTS 

In this section we present two use cases, compared against 
two state-of-the-art column store databases that are widely 
used in production. We will refer to the competing databases 
as A and B throughout this section. The first use case is TPC-



H benchmark. TPC-H provides a specification [8] for refresh 
functions that need to be executed as the workload is running. 
However the frequency of those functions can be chosen 
arbitrarily by the test sponsor. We are running the TPC-H 
benchmark against MemSQL and the two other databases 
with a very high refresh rate. The second benchmark is the 
adtech scenario that will be described in detail below. 

A. TPC-H Benchmark 

The TPC-H benchmark defines refresh functions that 
insert new orders and lineitems, as well as delete old orders. 
The functions in the definition insert and delete single 
elements. We run benchmark both executing such queries, 
and also executing batched loads and deletes, to see how 
MemSQL and the two other databases handle these two 
different cases. 

Our first results are for vanilla TPC-H with a scale factor 
of 100, with refresh functions as declared in the specification 
running as frequently as each database allows. We verified 
that MemSQL has at least as high a throughput as both A and 
B. 

We run all three databases on comparable clusters. 
MemSQL and A use 4 execution nodes, each with 8 cores, 
while B uses an 8 node compute cluster with each node 
having 4 cores. 

To get a baseline, we first run all the TPC-H queries 
immediately after the initial load but before starting the 
concurrent write workload. For that we get the performance 
numbers that are shown on figure 4. There are 22 TPC-H 
queries on the X-axis of the chart, with time taken to execute 
the query on Y-axis, in seconds.  

 

Fig. 4. TPC-H comparison without concurrent write queries. 

As expected, different databases perform well on 
different queries, due to differences in query optimization and 
execution. The fact that the performance of B is on average 
better than that of A or MemSQL is largely due to the fact 
that its implementation has automatically performed a full 
sort after the initial load (at the expense of load time), while 
MemSQL has data in exponentially decaying sorted runs and 
A has data only sorted within segments. 

We then start a write workload that conforms to the TPC-
H specification, and consists of singleton inserts and deletes 

with an equality predicate. We evaluate the read query 
performance 5 minutes after the write workload started, 
without stopping the write workload. The performance 
degrades slightly for MemSQL, and noticeably for A and for 
B. The performance in the presence of the write workload is 
shown on Figure 5. For several queries, performance did not 
noticeably degrade for A or for B - this corresponds to those 
queries which cannot make effective use of a projection sort 
order, for example because they scan the full table with no 
filter. For the majority of the queries, however, both A and B 
performed noticeably worse with concurrent writes because 
the row ordering was no longer optimal and in some cases 
may have even forced a significant change in query plan, such 
as using hash grouping in place of a streaming grouping 
operation that makes use of sorted runs. 

 

Fig. 5. TPC-H comparison with concurrent write queries running. 

To emphasize the difference, consider the change in 
performance for each of the three databases separately. Note 
how for the database A the overall performance degraded 
slightly on most of the queries, and significantly on two of 
them. For the database B performance on several queries 
degraded significantly as well. MemSQL’s performance 
stayed almost the same in the presence of the write queries. 

 

Fig. 6. Change in performance for database A 
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Fig. 7. Change in performance for database B 

 

Fig. 8. Change in performance for MemSQL 

B. Real World AdTech benchmark 

The second use case we consider is an adtech workload 
centered on the following schema 

CREATE TABLE users_categories  
    (user_id BIGINT NOT NULL, 
     category_id BIGINT NOT NULL, 
     observation_time BIGINT NOT NULL, 
     load_id BIGINT NOT NULL); 

The table contains observations on which users have been 
observed to be in which cohorts. A category corresponds to 
an interesting criteria - for example, having read an ICDE 
paper. The observation time records when the user was 
observed to belong to the category - observations older than 
a cutoff date (e.g. 30 days in the past) are discarded for all 
analyses. 

The first set of queries which the workload requires are 
overlap queries, which have variations of the following form 

SELECT COUNT(*) FROM (SELECT 

    user_id, 

    (MAX(category_id = 1234) AND 

     MIN(category_id != 2345)) AS 

relevant 

  FROM users_categories 

  WHERE category_id = 1234 

     OR category_id = 2345 

  GROUP BY user_id 

  HAVING relevant = TRUE) 

    AS distinct_relevant_users; 

This query produces a count of the distinct users who 
have been observed to belong to category 1234 and have 
never been observed to belong to category 2345. In general 
this family of queries finds counts of users satisfying an 
arbitrary set of membership constraints over a small constant 
number of categories. The family of queries powers both 
human-visible dashboards and automatic systems. In the 
former case it must have consistent response times within a 
second; in the latter, response times must be within a couple 
tens of milliseconds. Note that the filter can be served very 
well by segment elimination when we have a projection on 
the category_id column - the query will spend minimal time 
scanning rows that are not immediately relevant to the 
particular query instance. 

The second set of queries which the workload requires are 
inserts (typically in the form of LOAD DATA for bulk 
loading). Data is loaded immediately and continually as it is 
received from external services. Typical ingest batches range 
from tens of rows (efficiently handling such excessively 
small batches is an important property) to tens or hundreds of 
millions of rows. Such rows must immediately become 
visible to read queries. 

The third set of queries are deletes. Data beyond the cutoff 
date is deleted. Note that by this point, the rows will be 
physically spread through the storage layer - many or all 
segments will be modified by a deletion. 

The fourth set of queries are updates, or more specifically 
batch reloads. A regular event is for previously ingested data 
to be found to be inaccurate or incomplete. In this case 
previously loaded rows must be removed and corrected 
versions submitted, transactionally and without interruption 
to the read workload. Such jobs take the form of 

BEGIN TRANSACTION; 

DELETE FROM users_categories 

  WHERE load_id = 3456; 

LOAD DATA INFILE …  

  INTO TABLE users_categories (…) 

  SET load_id = 4567; 

COMMIT; 

Because the projection key does not align with the load_id 
(which is used to tag ingest batches for this express purpose), 
the affected rows are typically well spread through the 
system. A reload is expected to affect most or all of the 
current set of segments. 

The final query is a batch processing job, which is used to 
compute pairwise overlap between categories. 

SELECT t1.category_id, t2.category_id, 

  COUNT(DISTINCT t1.user_id) 

FROM users_categories t1, 

     users_categories t2 

WHERE t1.user_id = t2.user_id 

  AND t1.category_id < t2.category_id 

GROUP BY t1.category_id, t2.category_id 
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For this query, we use a secondary projection (see [1] for 
a discussion of multiple projections) ordered along the 
user_id column in order to facilitate a streaming merge join. 
Note that this enables the critical optimization of converting 
the COUNT(DISTINCT t1.user_id) into a COUNT(*) after 
pushing the DISTINCT down into the table scan. The hash 
table required to service the GROUP BY already extends to 
tens or hundreds of millions of buckets - if each bucket were 
itself to take space proportional to the distinct user count, 
timely query execution would be infeasible. Ordered iteration 
of the projection key, even in the face of continual inserts, is 
key to enabling this query. 

The workload for this section consists of a family of 
twenty queries described above, with 200 billion rows loaded 
into the users_categories table. Ingest and deletion rate are 
each 100,000 rows per second, with reloads accounting for 
an average of 5,000 rows per second. For MemSQL we use a 
cluster of 8 nodes in the public cloud, each equipped with 8 
cores. For A we use this same hardware, while for B we use 
a cluster of 16 machines with 4 cores each. 

Each query has selective predicates over the projection 
key, which allows an optimized implementation to scan a 
small fraction of the total row count. We continually ran the 
queries one at a time against each system over a twenty 
minute period and recorded response times. 

For the MemSQL column store engine the average query 
execution time was 0.028 seconds, with first and third 
quartile response times at 0.015 and 0.034 seconds. The 
implementation is extremely resilient to a mixed and 
continuous write workload, and is able to provide 
responsiveness capable of driving automatic as well as 
human-facing systems. 

For A the average query execution time was 2.11 seconds, 
with first and third quartile response times at 0.86 and 2.86 
seconds. We believe that the penalty in performance is 
primarily due to two effects. First, segment elimination is 
performed with coarser granularity, causing system A to 
process many more rows than the query semantics and data 
set require. Second, write operations and background storage 
optimization in this system can cause concurrent reads to 
block while heavy storage optimization operations proceed. 
However, the system does maintain relatively good variance 
in query latency. 

For B the average query execution time was 8.02 seconds, 
with first and third quartile response times at 4.27 and 14.23 
seconds. As noted in the discussion of the TPC-H benchmark, 
B automatically performs a full sort after initial data loads. In 
the presence of an ongoing write workload it does not 
maintain this full sort order, which in many cases causes it to 
resort to scanning large fractions of the table. 

VIII. RELATED SYSTEMS 

There are many column store databases that are widely 
used in production environments today, as well as hybrid 
column- and row-store databases, such as DB2 BLU [5] and 
SAP HANA [6] [9]. Two particular column store databases 

that are known to leverage sorted order on the data are 
Amazon RedShift [7] and HP Vertica [4] 

Amazon RedShift does not maintain sorted order in the 
presence of concurrent writes. It sorts the data after the initial 
load, but subsequent writes populate their rows in a separate 
unsorted region [2]. A manual VACUUM command is 
necessary to bring the data into a sorted order again. The high 
overhead imposed by this command (which must be run to 
allow performant reads) makes the system unsuitable for 
analytical workloads in the presence of continuous data 
ingestion. 

Vertica maintains exponentially growing segments (ROS 
container in their terminology), that they maintain efficiently 
in the presence of concurrent writes [4]. However, large 
segments do not allow for efficient segment elimination 
unless an efficient mechanism exists to perform elimination 
on subsections of a single segment. To the best of our 
knowledge there is no literature on such an implementation 
involving Vertica ROS containers. 

IX. CONCLUSIONS 

In this paper we have presented the MemSQL column 
store engine, with an architecture designed to provide 
scalable, low latency queries over a vast and continually 
changing data set. We believe that existing column store 
systems leave much on the table by restricting themselves to 
bulky and awkward ingestion schemes. An integrated design 
that considers both storage maintenance and constantly 
evolving data will not just improve performance along the 
traditional strengths of column store systems. It will also 
enable their strengths to be leveraged against problem 
domains that require promptness and analytical capabilities 
over large data sets, such as adtech, financial services, fraud 
detection, and real-time analytics applications. 
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